

Transcription – 3 step process 1) Initiation ■ Begins by RNA polymerase binding to the promoter

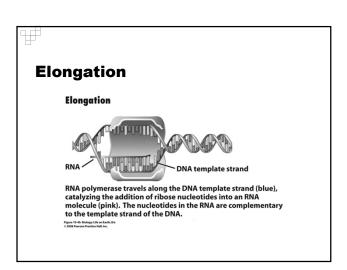
Transcription – 3 step process

1) Initiation

■ Begins by RNA **polymerase** binding to the promoter

2) Elongation

■ RNA polymerase reads the **template** strand of DNA

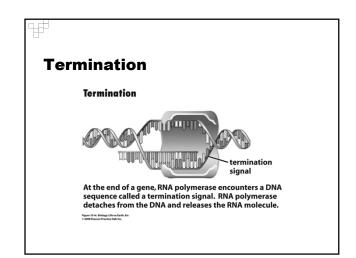


Transcription (cont...)

2) Elongation (cont.)

- RNA polymerase adds **complementary** RNA nucleotides to form the mRNA
- * Base pairs are the same except that A now pairs with \boldsymbol{U}

DO: Practice DNA → RNA pairing on right side

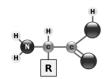

Transcription (cont...)

2) Elongation (cont.)

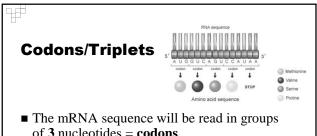
- RNA polymerase adds **complementary** RNA nucleotides to form the mRNA
- * Base pairs are the same except that A now pairs with U

3) Termination

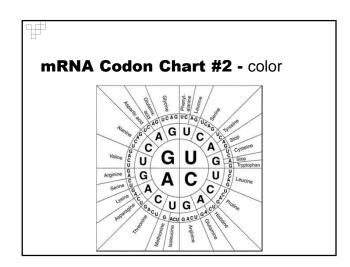
■ Transcription **occurs** until a **termination** signal is reached



Quick Review

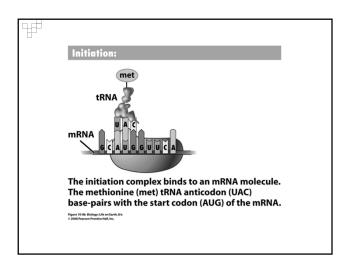

- **Function of mRNA?**
- **■** Location of Transcription?

Amino Acid Role

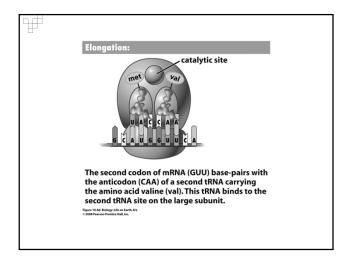


- The amino acid **sequence** determines the **structure** of the protein and therefore determines the protein's **function**
- There are **20** amino acids found in **proteins**□9 **essential** ones; must be consumed (**Can't** be made)

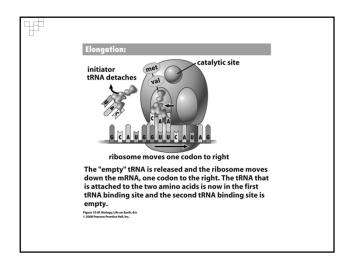
- of 3 nucleotides = codons
 - \square Codons determine which **amino** acid will get delivered to ribosome
 - □Codon chart will be used to identify amino acids


m	RNA	Cod	lon C	hart	#1	م م ا م م	
				ııaı ı	T .	- COIOI	
First Letter	Second Letter				Third	Amino Acid	3-Letters
	U	C	A	G	Letter	Alanine	Ala
U	phenylalanine	serine	tyrosine	cysteine	U	Arginine	Arg
	phenylalanine	serine	tyrosine	cysteine	c	Asparagine	Asn
	leucine	serine	stop	stop	H A	Aspartic acid	Asp
						Cysteine	Cys
	leucine	serine	stop	tryptophan	G	Glutamic acid	Glu
c A	leucine	proline	histidine	arginine	U	Glutamine	Gln
	leucine	proline	histidine	arginine	С	Glycine	Gly
	leucine	proline	glutamine	arginine	A	Histidine	His
	leucine	proline	glutamine	arginine	G	Isoleucine	Ile
	isoleucine	threonine	-		1	Leucine	Leu
			asparagine	serine	-	Lysine	Lys
	isoleucine	threonine	asparagine	serine	С	Methionine	Met
	isoleucine	threonine	lysine	arginine	A	Phenylalanine	Phe
	(start) methionine	threonine	lysine	arginine	G	Proline	Pro
G	valine	alanine	aspartate	glycine	U	Serine	Ser
	· · · · P· · ·			.,	+=	Threonine	Thr
	valine	alanine	aspartate	glycine	-	Tryptophan	Trp
	valine	alanine	glutamate	glycine	A	Tyrosine	Tyr
	valine	alanine	glutamate	glycine	G	Valine	Val

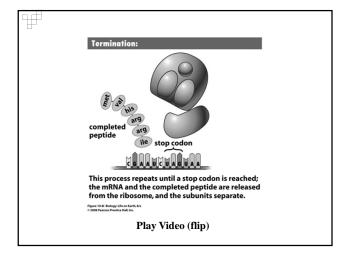
Translation: Step 1: Initiation


- A. mRNA leaves the nucleus and migrates to a ribosome in the cytoplasm
- B. The mRNA enters the **ribosome** between the large and small **subunits**
- C. The **mRNA** is then read by the **ribosome** in groups of 3 called codons
- D. AUG is always the first codon "Start" codon

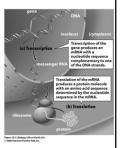
Translation: Step 2: Elongation

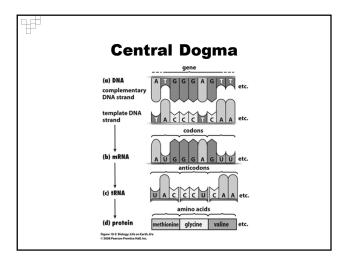

- E. One codon is read by the **ribosome**, while a **tRNA** brings in the correct **amino** acid for that codon (1st amino acid will always be **Methionine** (Met.))
- F. The **tRNA** has an **anticodon** (complementary) so that it can match up to the codon
- G. The next **codon** is read, and another **tRNA** carrying the correct **amino** acid comes to the **ribosome**

Step 2: Elongation (cont.)


- H. The two **amino** acids are bonded together with a **peptide** bond
- The first tRNA can now leave the ribosome to go get another amino acid
- J. The process continues the entire length of the mRNA that codes for the **gene**

Translation: Step 3: Termination


- K. Once a "STOP" codon enters the ribosome, **termination** begins
- L. These do **NOT** code for an amino acid; instead they release the newly formed **polypeptide**



In Summary..

- *Transcription* = reading a single strand of DNA in order to make RNA, occurs in the nucleus
- Translation = using an mRNA to code for the linking of amino acids, occurs in the ribosome
- Product is a *polypeptide chain* that can fold itself into a protein

